Light BYTES – December 2020: Introducing the newly updated family of SOLA light engines®

Updated SOLA light engines for 2021 and Beyond

You asked and we delivered! Lumencor is proud to introduce the newly updated family of SOLA light engines that will continue to set the standards for performance and reliability in white light illumination. This product line now includes 4 standard models that are differentiated by the number of sources and spectral output: SOLA, SOLA FISH, SOLA U-nIR and SOLA V-nIR light engines. The SOLA light engine provides white light output for excitation of DAPI, GFP/FITC, YFP, Cy3, mCherry, Cy5 and spectrally similar fluorophores. In the SOLA FISH light engine, output in the 475–600 nm region is red-shifted to provide optimal excitation for SpectrumGreenTM, SpectrumRedTM and other fluorophores commonly used for fluorescence in situ hybridization (FISH) analysis in cytogenetic testing laboratories. The SOLA V-nIR and U-nIR light engines offer the broadest spectral coverage, including near infrared (nIR) output for excitation of fluorophores such as Cy7 and ICG, and for other applications that benefit from the enhanced tissue penetration of nIR light.

All SOLA light engine models now include:

  • USB and electronic shutter control connections
  • Linearized intensity control
  • Active output stabilization
  • Long operational lifetimes
  • 24-month warranty

The 3 mm liquid light guide required for delivering the SOLA light engine output to microscopes or other bioanalytical instruments is now automatically included with all purchases. To request a sales quotation for any (or all) of the four new SOLA light engine models, please submit our online quote request form today!

Download the PDF of Lumencor lightBYTES: December 2020

Light BYTES – November 2020: Intensity Control Linearity in Lumencor’s New Generation of Light Engines

Lumencor’s new Generation of Light Engines: Intensity Control linearity

AURA, RETRA, SPECTRA, CELESTA and ZIVA light engines, as well as the newly refreshed SOLA light engine for 2021, incorporate on-board microprocessors, providing impressive advances in control and monitoring capabilities. One such advancement is linear intensity control. Each of these illuminators generate optical power that has a precisely linear relationship to intensity settings across all colors, providing more quantitive and predictable responses for users. In the case of white light, constant color temperature is achievable regardless of output power. Just another reason customers who care about performance come to Lumencor for solid state illumination.

Download the PDF of Lumencor lightBYTES: November 2020

October 2020 Application spotLIGHT: Single-cell Characterization of Immunization Responses with SOLA light engine

Single-cell Characterization of Immunization Responses

The current Covid-19 pandemic has sparked an urgent need for improvements in the characterization of the immune response to vaccinations. Although simple and robust, conventional antibody titer measurements provide little information on the phenotypic diversity of IgG-secreting cells (IgG-SCs), the functional properties of the antibodies they produce or the temporal profile of the immune reaction in response to an antigenic challenge. In a recent paper published in the Journal of Immunology [1] and other recent publications [2,3], a team of researchers based in Paris and Zurich describe the application of a single-cell analysis technique known as DropMap to provide quantitative analysis of the distribution of antibody secretion rates and affinities over the course of an immune response. The DropMap protocol begins with microfluidically controlled compartmentalization of single splenocytes, extracted from mice at time points up to 8 weeks after immunization, in individual 50-picoliter droplets together with immunomagnetic beads and fluorescently-labeled antigens and anti-IgG antibodies. The beads are magnetically aligned to form micrometer-sized structures that can be visualized by fluorescence microscopy using a SOLA light engine.  Bead capture of red-fluorescent anti-IgG (Fc) identifies IgG-SCs, allowing determination of their frequency.  Capture of green-fluorescent antigen provides information on antigen binding affinity. To accumulate population statistics, two-dimensional arrays containing >10,000 cell-containing droplets are imaged every 7.5 minutes over 37.5 minutes. The SOLA light engine provides the exceptional light output stability required to extract reliable quantitative information across thousands of droplets and multiple time points.


[1]  K Eyer,  C Castrillon, J Baudry et al. J Immunol (2020) 205:1176–1184

[2]  Y Bounab, K Eyer, C Védrine et al.  Nat Protoc (2020) 15:2920–2955

[3] K Eyer, RCL Doineau, J Baudry et al. Nat Biotechol (2017) 35:977–982

Download PDF of Lumencor Application spotLIGHT October 2020

Lumencor, Inc., Named Makers & Manufacturers Honoree in Portland Business journal Product Innovation Awards, 2020

Lumencor, Inc. has been named 2020 Product Innovation of the Year honoree by the Portland Business Journal for our next generation SOLA light engine®. Each year, the PBJ honors the region’s top manufacturing companies who drive the economy with innovation, excellence and productivity. The new generation SOLA features increased power, longevity, stability and robustness over the projected 15 year life time with no replacement parts. Lumencor’s SOLA light engine is used in fluorescence microscopy for life science and materials science applications… Read Press Release

Find out more about the Innovation Award


Industrial SpotLIGHT – September 2020: Characterization of Superhydrophobic Surface Coatings

Characterization of Superhydrophobic Surface Coatings

When two or more water droplets coalesce on a superhydrophobic surface, the resulting droplet can jump away from the surface due to inertial−capillary energy conversion. The resulting passive shedding of micro-scale water droplets has the potential to enhance heat transfer, anti-icing, and self-cleaning properties. To study this process, researchers at the University of Illinois developed an improved imaging technique called focal plane shift imaging (FPSI) to measure three-dimensional (3D) droplet trajectories. A high-speed camera is used to obtain video recordings at variable frame rates up to 500,000 frames per second. Illumination is supplied by a SOLA SM light engine®, specifically chosen for its high-intensity, low-power consumption and narrow spectral range (380−680 nm) in order to minimize heat generation at the surface due to light absorption. The effects of initial droplet size mismatch and multiple droplet coalescence on the jumping droplet velocity are revealed, showing that multi-droplet jumping has the potential to enhance the droplet departure speed.

Download the PDF of Lumencor Application spotLIGHT: September 2020

14940 NW Greenbrier Parkway | Beaverton, OR 97006 USA | 503.213.4269 |