Light BYTES – December 2020: Introducing the newly updated family of SOLA light engines®

Updated SOLA light engines for 2021 and Beyond

You asked and we delivered! Lumencor is proud to introduce the newly updated family of SOLA light engines that will continue to set the standards for performance and reliability in white light illumination. This product line now includes 4 standard models that are differentiated by the number of sources and spectral output: SOLA, SOLA FISH, SOLA U-nIR and SOLA V-nIR light engines. The SOLA light engine provides white light output for excitation of DAPI, GFP/FITC, YFP, Cy3, mCherry, Cy5 and spectrally similar fluorophores. In the SOLA FISH light engine, output in the 475–600 nm region is red-shifted to provide optimal excitation for SpectrumGreenTM, SpectrumRedTM and other fluorophores commonly used for fluorescence in situ hybridization (FISH) analysis in cytogenetic testing laboratories. The SOLA V-nIR and U-nIR light engines offer the broadest spectral coverage, including near infrared (nIR) output for excitation of fluorophores such as Cy7 and ICG, and for other applications that benefit from the enhanced tissue penetration of nIR light.

All SOLA light engine models now include:

  • USB and electronic shutter control connections
  • Linearized intensity control
  • Active output stabilization
  • Long operational lifetimes
  • 24-month warranty

The 3 mm liquid light guide required for delivering the SOLA light engine output to microscopes or other bioanalytical instruments is now automatically included with all purchases. To request a sales quotation for any (or all) of the four new SOLA light engine models, please submit our online quote request form today!


Download the PDF of Lumencor lightBYTES: December 2020

Light BYTES – November 2020: Intensity Control Linearity in Lumencor’s New Generation of Light Engines

Lumencor’s new Generation of Light Engines: Intensity Control linearity

AURA, RETRA, SPECTRA, CELESTA and ZIVA light engines, as well as the newly refreshed SOLA light engine for 2021, incorporate on-board microprocessors, providing impressive advances in control and monitoring capabilities. One such advancement is linear intensity control. Each of these illuminators generate optical power that has a precisely linear relationship to intensity settings across all colors, providing more quantitive and predictable responses for users. In the case of white light, constant color temperature is achievable regardless of output power. Just another reason customers who care about performance come to Lumencor for solid state illumination.


Download the PDF of Lumencor lightBYTES: November 2020

Light BYTES – September 2020 : George McNamara wins Competition with SPECTRA Light Engine®

SPECTRA Light Engine® Takes the Win Highlighting smFISH

In celebration of Earth Day Lumencor launched its annual Light Microscopy Imaging Competition to highlight Lumencor’s commitment to manufacturing bright, clean, and mercury-free light engines. The tallies are in and we are happy to announce the winners. As always, we are impressed with the breadth and skill it took to capture each of the images submitted in this years competition. For more information on how Lumencor light engines can help you in your research, please contact us.

 

1st Place – George McNamara and Lauren Blake
Johns Hopkins School of Medicine, Baltimore, MD
Light Engine: SPECTRA light engine®

5-plex mouse embryonic fibroblasts expressing MS2-tagged beta-actin mRNA. Red Halo-JF549-NLS-MCP, Green Atto594 POLR2A mRNA FISH, Blue DAPI, Cyan Cy5 beta- actin-MS2 mRNA FISH, Magenta Alexa Fluor 488-anti-DDX6 immunofluorescence. Microscope details at http://confocal.jhu.edu/ current-equipment/fishscope. Specimen preparation by Lauren Blake, Prof. Bin Wu’s lab (JHU Biophysics). Imaging by George McNamara, Ross Fluorescence Imaging Center.

 

 

2nd Place – Ariel Waldman
Independent Researcher, Antartica
Light Engine: SOLA SM light engine®

A nostoc discovered in Antarctica autofluorescing under TRITC excitation. This nostoc was found inside a microbial mat in the Dry Valleys of Antarctica. A nostoc is a genus of cyanobacteria with beaded filaments intricately woven inside a gelatinous pouch. This image highlights the structure of the beaded filaments and their scaffolding within the gelatinous pouch.

 

 

 

 

3rd Place – Tejeshwar Rao
University of Alabama, Birmingham, AL
Light Engine: SOLA SE light engine®

 

Cos-7 cells spread on a tension gauge tether (TGT) surface and imaged on a Nikon Ti2 eclipse microscope using a Lumencor light engine and a turret wheel with different excitation and emission filter cubes – The RICM image (panel 1) was taken by removing the emission filter from the path. Cell tension indicated by TGT probe opening (panel 2) and paxillin staining (panel 3).


Download the PDF of Lumencor Light BYTES: September 2020

Light BYTES – August 2020: USB Control Latency and How to Avoid It

USB Control Latency and How to Avoid It

 

Control latency limits the response time of all USB-connected microscope accessories, including cameras, stage controllers, filter wheels, and Lumencor light engines. Latency originates from the fact that the supervising PC operating system (usually Microsoft Windows) must allocate time to many competing tasks. As shown in the adjacent data plots, the impact on the user is that the duration of light output on the specimen is longer, and sometimes much longer, than the exposure time set in the acquisition software.

 

Duration of light output produced by a CELESTA light engine®, and detected by an external analog photodiode, in response to various exposure times set for a Hamamatsu ORCAFlash 4.0 camera controlled by MicroManager (v1.4.23) image acquisition software. Note that the discrepancies between set exposure time and light output duration are not specific (except in minor details) to any particular image acquisition software or light engine or camera model. Panel A shows data for light engine control via LEGACY mode USB communication. Panel B shows the same nominal exposure sequence controlled via STANDARD mode USB communication.

 

Two scenarios are shown, one using LEGACY mode USB communication (as implemented on the SPECTRA X and SOLA SE light engines), and the other using STANDARD mode communication (as implemented on the AURA III, SPECTRA III and CELESTA light engines). Because the USB data transmission rate in STANDARD mode is faster than that of LEGACY mode (115,200 vs 9,600 baud), it provides a significant reduction of latency for exposure times on the order of 100 ms (and above).  However at short exposure times (5–10 ms), the impact of the faster communication speed in STANDARD mode diminishes, as the response is dominated by the software processing speed.

To obtain light output durations less than about 50 ms, timing must be derived from a hardware controller instead of the PC operating system. The hardware controller supplies TTL timing signals to the light engine via a breakout cable (Table 1). Examples of millisecond-duration light pulses generated in this way can be found in the Performance section of our website. At the present time, the capacity to acquire time-lapse sequences of short duration exposures is limited by the camera (modern sCMOS cameras typically have a maximum frame rate of around 100/second), rather than by the light source.

 

Download the PDF of Lumencor Light BYTES: August 2020

Light BYTES – June 2020: Dichroic Mirrors and Filters for SPECTRA, CELESTA, and ZIVA Light Engines®

Dichroic Mirrors and Filters for SPECTRA, CELESTA, and ZIVA Light Engines®

In fluorescence microscopy, the filter set, consisting of excitation and emission bandpass filters and a dichroic beamsplitter, plays a critical role. It performs the essential functions of directing excitation light from the light source to the sample and then separating it on the basis of wavelength, from fluorescence emitted from the specimen. The filter set consists of excitation and emission bandpass filters and a dichroic beamsplitter. Optimized filter sets are critical because fluorescence emission from a microscopic specimen is many orders of magnitude (>106) weaker than the excitation from the light source. Recognizing optimized filter set specifications are critical for obtaining images with high signal:background contrast. Lumencor has developed uniquely high performance, multiband dichroic beamsplitters and multiband and single band emission filters for use with our SPECTRA, CELESTA, and ZIVA light engines®. These light engines are setting the standard for high performance, high brightness, turn-key solutions in solid-state lighting for life and industrial sciences.

All emission filters and dichroics have standard dimensions and are supplied in an unmounted form. Installation in filter cubes, filter wheels, or other instrumentation-specific mountings is required before use.

The multiband emitters and dichroics are optimized for compatibility with the electronically selectable excitation outputs of SPECTRA, CELESTA, and ZIVA light engines® (Figure 1). This enables fast multicolor imaging without the need for filter wheels or other positioning devices to execute filter interchanges. Single bandpass filters are offered for use in situations where fluorescence crosstalk (e.g. detection of FITC fluorescence derived from violet (DAPI) excitation) confounds identification of fluorescently labeled components of the specimen.    

Figure 1. Transmission spectra of CELESTA/ZIVA VCGRnIR pentaband dichroic and emitter superimposed on the violet, cyan, green, red, and near-infrared output lines of the CELESTA and ZIVA light engines®.


Lumencor’s Earth Day Light Microscopy Imaging Competition is in full swing, offering the opportunity to win up to $10,000 worth of state-of-the-art, solid-state lighting! Submit your images today and help us celebrate and promote a brighter, greener planet through the use of mercury-free illumination. Qualifying images must be acquired using Lumencor light engines.

Download the PDF of Lumencor Light BYTES: June 2020

Light BYTES – May 2020: Independent Intensity and Pulse Width Control for Stroboscopic Illumination with the SPECTRA X light engine®

Independent Intensity and Pulse Width Control for Stroboscopic Illumination

Evaluation of photo-stimulation intensity dependence is often a necessary part of neuromodulation experimentation utilized in optogenetics studies [1]. The inherent stability and quantitative nature of Lumencor’s SPECTRA X light engine® make it particularly well suited as the pulsed light source of choice for studies requiring pulse width and frequency of stroboscopic illumination analyses. Find more detail regarding this extremely stable, reproducible, and well-behaved data, as well as a specific reference in a recent Journal of Physiology publication by authors Kubota, Sidikejiang, and Seki, on Lumencor’s website.

Figure Description: Alternating cyan (485/25 nm, ~0.5 ms) and green (560/32 nm, ~3 ms) output pulses generated by TTL triggering of a SPECTRA X light engine. Two superimposed oscilloscope traces are shown in which the cyan intensity is adjusted from 100% to 55% via RS232 serial commands while the green intensity remains constant. Separation of the cyan and green pulses is ~0.25 ms.

Reference

[1] S Kubota, W Sidikejiang, K Seki et al. J Physiol(2019) 597:5025–5040

Download the PDF of Lumencor Light BYTES: May 2020
lumencor
14940 NW Greenbrier Parkway | Beaverton, OR 97006 USA | 503.213.4269 | info@lumencor.com