CELESTA and SPECTRA Standby Mode

CELESTA® and SPECTRA light engines® with operating software version 2.1.19 and above have a standby mode to conserve power during periods when no active light output generation is required. The light engine automatically switches into standby mode after a set latency period (i.e. after the last light output = OFF command was issued). The default latency period is 300 seconds (5 minutes), however this can be temporarily reset by the user. The characteristics of standby mode registered by the onboard control GUI are shown in the adjacent screenshot. Standby mode is also marked by an automatic shut-off of the main cooling fan. Standby mode automatically terminates when the next light output = ON command is issued.

CELESTA light engine® Control GUI in standby mode:

  1. Light output = OFF in all channels (all radio buttons unfilled).
  2. Status indicator (STS) = red.
  3. Standby mode indicator. In the latency period after the last light output = OFF command, this display reads “Standby in # seconds” where # is between zero and 300 (default) seconds. When light output is active, this display reads “Active”.
  4. Operating software version number.
  5. Portal to command line interface (for resetting the latency period from its default value of 300 seconds).

Light BYTES: November 2019

ZIVA® versus CELESTA®: It’s all about the fiber

In 2018, Lumencor introduced the CELESTA light engine incorporating 7 individually addressable laser light sources. The ZIVA light engine, introduced at the 2019 Society for Neuroscience meeting in Chicago, while similar in some respects, is distinctive in being designed to couple into smaller bore optical fibers.

The output of the ZIVA light engine is suitable for structured illumination microscopy (SIM) and other super-resolution microscopy techniques. In these applications, it provides an alternative to more costly and hard-to-align single mode laser sources. The larger illumination field of the CELESTA light engine is preferred for applications such as spinning disk confocal microscopy, MERFISH or smFISH.


Common Features of ZIVA and CELESTA Light Engines

  • Same 7 laser lines (405 nm, 446 nm, 477 nm, 520 nm, 546 nm, 638 nm, 749 nm)
  • Same compact 15 cm x 35 cm footprint
  • Same onboard microprocessor-based control and feedback interface
  • Same laser safety interlock configuration

100X widefield (a) and structured illumination microscopy (b) images of actin (green) and mitochondria (orange) in fixed bovine pulmonary endothelial cells. From Pospíšil et al, GigaScience (2018) 8:1–12


Download the PDF of Light BYTES: November 2019

Light BYTES: September 2019

SOLA® for the win!

This year Lumencor launched the Light Microscopy Imaging Competition in celebration of Earth Day to highlight Lumencor’s commitment to manufacturing bright, clean, and mercury-free light engines. We were impressed with the quality and breadth of applications in the submissions we received. Without further ado here are the winners for Lumencor’s 2019 Earth Day Light Microscopy Imaging Competition:

 

1st Place – Robert Zucker
EPA, Research Triangle Park, NC
PRIZE: NEW SOLA SE U-nIR Light engine

ARPE 19 cell treated with 75nm silver nanoparticles that are coated with PVP Combination of darkfield image (white nanoparticles) and fluorescence image of nuclei (blue), Golgi (green), and microtubules (red). Observation with a using a 60X plan Fluor lenses and a SOLA light engine®. The image was processed using Nikon deconvolution algorithms.


2nd Place – Glyn Nelson
University of Newcastle, UK
PRIZE: $1000 off voucher

Image of a mosquito larva’s ‘mustache’, the fine brush hairs on the side of their mouth. Z stack deconvolved and rendered in Huygens. Larva fixed in PFA and mounted in glycerol. Imaged with a Leica DMi8 equipped with a 40X oil 1.3 NA objective, GFP filter cube, Hamamatsu Flash4 v2 camera and a SOLA SE light engine.


3rd Place – Abdul Mohammed
Ultivue, Cambridge, MA
PRIZE: $500 off Voucher

16-plex biomarker profiling of Non-Small Cell Lung Cancer tissue (CD3, CD4, CD45RO, CD68, CD163, CD8, CD11c, CD20, PD1, PDL1, Cytokeratin, LAG3, FoxP3, Ki67, GranzymeB and MHCII). Nuclear counterstain shown in blue. The slide was processed using Ultivue’s InSituPlex technology and imaged on a fluorescence microscope using a 20X objective and SPECTRA X light engine®.



These images clearly demonstrate the quality of data attainable by using Lumencor’s solid state light engines. For more information on how Lumencor light engine can help you in you illumination needs please contact us.


Download the PDF of Light BYTES: September 2019

Packaging Guidance for Shipping Light Engines

Occasionally it will be necessary to ship a light engine back to our factory in Beaverton for service. On these occasions, you will receive an e-mail containing a return material authorization (RMA) and shipping instructions from our technical support department. Among those instructions are “Please ensure that the light engine is securely packaged for shipment, if possible in the original transit box in which it was delivered”. Secure and effective packaging is important in order to avoid additional costs in time and money for repairing damage incurred during transit. Here we offer some more detailed guidance on packaging light engines for shipment.

It is recommended to follow Lumencor’s packaging for new light engine shipments as closely as possible. The performance of this packaging has been proven in the course of thousands of shipments all over the world. An example is shown in the adjacent photo. Particularly important are the rigid expanded foam inserts. These prevent movement of the light engine within the box during transit. Bubble wrap, air pillows or loose packing material such as styrofoam “peanuts” are NOT effective substitutes and should NOT be used. Other important packaging tips include:

  • Detach the liquid light guide from the light engine and from its collimating adapter. Coil it loosely in the mylar pouch that it came in, or in a 2-gallon (33 x 38 cm) “ziploc” bag. Place the bag containing the light guide above the light engine in the shipping box, separated by a layer of packing material.
  • Do NOT use fibrous packing material that is liable to disintegrate during transit. Small pieces of packing material debris may end up deposited on the internal electronics and optics of the light engine.
  • Disconnect the DC power supply from the light engine and pack it separately inside the shipping box.

For additional guidance in preparing light engine shipments, please e-mail your questions to techsupport@lumencor.com.

Device Drivers for SPECTRA III, CELESTA, & AURA III light engines

The latest nightly builds of MicroManager 1.4.23 now include device drivers for SPECTRA III®, CELESTA® and AURA III® light engines. The basic set-up in the MicroManager Hardware Configuration Wizard is shown in the screenshot below.

Note that the GEN3 driver uses STANDARD mode communications. The light engine serial port addressed by MicroManager must therefore be set to STANDARD mode on the settings page of the Web GUI.

Other image acquisition software packages that now support SPECTRA III, CELESTA, and AURA III light engines are:

  • NIS Elements (Version 5.11 and above)
  • MetaMorph

For updates on controlling SPECTRA III, CELESTA, and AURA III light engines using other software packages, please email our Technical Support group at techsupport@lumencor.com.

lumencor
14940 NW Greenbrier Parkway | Beaverton, OR 97006 USA | 503.213.4269 | info@lumencor.com